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We consider the Poisson problem on a segment of the unit disc and on triangles.
On the segment we transform the Poisson problem by means of polar coordinates. In
these new coordinates we have a problem in a rectangle which can easily be mapped
onto the square. Here standard Chebyshev collocation techniques can be applied.
Then the segment is mapped onto a triangle where the same spectral scheme may
be used. By numerical tests we observed the expected high spectral accuracy. Due
to the corner singularity a singular behaviour of the solution can be expected. Here
we improved the accuracy by auxiliary mapping techniques. Further, it is shown that
finite difference preconditioning can be successfully applied in order to construct an
efficient iterative solver. Finally, a domain decomposition technique is applied to the
patching of a rectangular and a triangular elemeng.1998 Academic Press

Key Words:spectral; collocation; triangles; auxiliary mapping; preconditioning;
domain decomposition.

1. INTRODUCTION

It is well known that spectral collocation schemes can be successfully applied to ¢
tic problems in rectangular domains. For smooth solutions the high (exponential) spe
accuracy can be achieved. Here we are interested in spectral collocation on triangu
ements. For the- and theh-p-version of the finite element method the optimal nods
for quadrature are investigated by Bakaét al.[1, 3-5]. These techniques are limited t
finite element discretizations. For spectral schemes it is not a priori clear which colloc:
nodes have to be chosen. It is not possible to employ the standard Gauss—-Lobatto
in both directions. Hesthaven [12] presented optimal nodal sets based on an electrc
interpretation of the nodes. Gottlieb and Hesthaven [9] studied stable spectral schem
conservation laws on triangles with unstructured grids. Sherwin and Karniadakis [14]
posed an unstructured spectral element method on triangular and tetrahedral subdo
where a special spectral basis (see Dubiner [7]) has been employed. Wihghafé5-17]
consider spectral element methods on triangles for geophysical fluid dynamics prok
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and the shallow water equations. Here special function spaces for triangular spectral
ments are introduced. Modifications of the classical modified Dubiner’s basis are propo:
called an “interior-orthogonal” basis. The new basis retains the most important prof
ties of the Dubiner’s basis, but gives a weight matrix which is simpler. Here we follo
a completely different approach where the standard spectral Cheyshev basis is usec
propose a mapping technigue where the Poisson problem is first mapped onto a seg
of the unit disc. For this purpose polar coordinates are used. In polar coordinates we |
a rectangular domain ifr, ) € Qg, = (0, 1) x (0, 61) for 0 < 6; <2x. Thenfor 0< 61 <x

the circular boundary of the segment is mapped onto an edge of the triangle. This me
that nowr depends o, i.e.,r =r(0). In ©,, we discretize by means of the standard
Chebyshev collocation scheme. Hence we approximate by Chebyshev polynomials
collocation is performed at the Chebyshev Gauss—Lobatto nodestin Homogeneous
Dirichlet boundary conditions are enforced on the bounday,. It is numerically shown
that for smooth solutions the high spectral accuracy can be achieved. However, the |
metric singularity often gives rise to singular solutions. Here we investigated auxilia
mapping techniques to smooth the singularity. This approach was intensively studiec
Pathria and Karniadakis [13] for spectral elements. The problem is mappedSigpm
to @, so that the corner is eliminated. But now the singularity is caused by the sing
lar behaviour of the right-hand side. Neverthelessékos 7/+/2 the singularity is now
much weaker, which leads to an improvement in accuracy. This is confirmed by nur
ical experiments. Finally we study finite difference preconditioning. It is shown that t
condition number becomes independenfNbfThis can be used in constructing efficient
iterative solvers. For more complicated geometries, where rectangular and triangular su
mains match, we propose a domain decomposition technique. Here a Dirichlet-Neurr
interface relaxation (see Funaro, Quarteroni, and Zanolli [8]) is iterated until continu
of normal derivatives is achieved. Numerical results demonstrate the efficiency of
treatment.

2. TRANSFORMATION OF TRIANGULAR ELEMENTS
We consider the Poisson problem in a segment, i.e.,

Au=f inQy, (1)
u=0 o0njQy,, ()

where f denotes a given force and
Qp, ={(X,y) =r(cosh,sinf) :0<r <1,0<6 < 64}

denotes a segment with angle As usualdy, denotes the boundary @&t,,. In polar
coordinates the Poisson problem can equivalently be written as

r2Upy 41U +Ugg =r2f  inQy,, (3)
u=20 ondQy,, 4

where

Qo ={(r,0):0<r <1,0<6 < 61}.
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Here we multiplied the transformed Laplace operator hyAs we see later this represen-
tation has advantages for preconditioning.
Further, we are interested in the Poisson problem on triangular elements given by

Tglz{(x,y)z (cosf,sing) :0<r <1,0<9<91},

r
cosH + t; sind
where

01
tl = tanE.

Ty, results fromS2,, by mapping the circular boundary to an edge of the triangle. This
accomplished by the mapping

r

r-r@)= — .
cos + t1 sind

Hereby we obtain the third edge which is(ix, y) coordinates, given by
X+ty=1

For instance, fof; = 7 /2 we obtairt; = 1 and the straight ling = 1 — x. For a fixed radius
r,0<r <1, the transform is given by + t;y =r and tard = y/x. This yields

y
Uy = Ur — mue,
2y y? 2xy
Uex = Urr = 23 n yZUre + X2+ yz)2u99 + X2+ y2)? Ug
and
Uy = tiuy + muea

x2 2xy

X
)
Uyy = t7Urr + mlmure + muee - mue-

Hence, the Poisson problemTy, can equivalently be written as

(L+t) (%% + y)Urr + 2(tiX — Y)Urg + Ugg = (X2 + Yy f in Ty, (5)
u=0 onaTy, (6)
or
1+1t7 ) t; cosd — sind r2
— 1y, 42— rUpg+Uyp=—F in
(cosh +using)2 " T Coss rsing' U T = (cosh + 4 sing)? Qs
u=20 onoQy,.

Therefore, in both cases we are able to transform the Poisson problem onto the rect

Qo,.
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3. SPECTRAL DISCRETIZATION

For the spectral approximation we use a standard Chebyshev collocation scheme.
defined on the Chebyshev Gauss-Lobatto nodes given by

i jm o
i,ti) = cos—,cos— |, i,]=0,...,N.
(S’ J) < N’ N) ]

Hence fast Fourier transforms (FFTs) are available for the efficient evaluation of spec
derivatives. In the two-dimensional case they can be evaluat®d it log N) arithmetic
operations. These nodes are mappedrof) € (0, 1) x (0, 61) by the linear transform:

1 61
r = E(S +1), 6= E(tj +1).

By using these nodes ifr,0) we plot for N =16 the collocation nodes ofg,, for
0p=m/2,m, gn, andT,, for 6, =x/2 in Figs. 1-4. As expected, the nodes are clustel
ing near the cornar=0. Now we present the Chebyshev collocation scheme iirttig
coordinate system. As usual we employ a Chebyshev approximagierP?,, where

P9, = {p : p polynomial of degree<N in's, t vanishing on the boundayy

un can be written as

N
Uv= > annTm®Ta(t), amn€R,

m,n=0

whereT,(s) = cosm arccoss denotes thenth Chebyshev polynomial. The boundary con-
ditions are automatically fulfilled and we require at tthe— 1)? collocation nodes:

(r2ure +rur + Ugg) (ri, 05) = r2f(ri,6) fori,j=1,...,N—1.

08|

0.6 |-

04 | -

02 |

0 IR i : . . L
0 0.2 04 0.6 0.8 1

FIG. 1. Collocation nodes i, ».
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FIG. 2. Collocation nodes i, .
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FIG. 3. Collocation nodes iif23,/».
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FIG. 4. Collocation nodes i, .
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Similar collocation conditions are required for Eq. (5). The spectral approximation is ne
uniquely determined. The occurring derivatiugs, U,, Ugg can be spectrally evaluated
by using the standard Chebyshev collocation derivatives inghg-¢oordinate system.
Obviously, we obtain

U = 2Us, Uy = 4Uss,

4
Up = —Up, Ugg = —Utt, U = —U
0 91 t 06 91 tt ro 91 st-
The spectral collocation derivative is given By = (d; j)i,j=0,...n (see Canutet al. [2]),
where
G ( )i+
cj s—sj °’ L7
d 2151%23 1<|:jSN_1a
= 2 .
2N6+1’ i=j=0,
2
2N6+17 i=j= N,
and

2 ie(oN),
=11 i=1.. N-1

Partial derivatives can be obtained by means of tensor product represengjtioi the
identity matrixIy; i.e.,

9 92
— =2(DN® In), _z4D2 [
ar (Dn ® In) or2 (DR ® In),
9 2 4
7~7| Dn), — | D2
50 (IN®Dn), oo3 = 6)(N® )

92 4

——D D
3190 (Dny ® Dn).

Now the spectral operators are well defined. For these spectral discretizations we expec
high spectral accuracy. For smooth (analytical) solutions exponential convergence ca
observed. We tested the accuracy for the following two examples, where the exact solut
(in the (x, y)-coordinate system) are given by

uex, y) = xy(€“’ —e), 6, =m/2 @)
for problem (3) and
uix,y) =xyEety —e), 6 =mn/2 (8)

for problem (5). We calculated the discrété-error E2 which is given byE2 = ||u — uy||.
From the numerical results in Tables | and II, we observe the exponential decay of the el
For example (7), the rounding error accuracy is already reached fod 6. This is due to
the fact that the exponert + y? =r2 is independent of.
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TABLE |
Results for Example (7)

N E2
4 1.94x 10°°
8 6.62x 1077
16 7.82x 1071
32 5.79x 10715

From the numerical results we observe a uniform resolution over the whole dom
Clearly, the collocation points are clustering near the corner, but there is nearly no
ference in the error distribution. The nodes are optimal since the original problem on
triangular element is transformed onto an elliptic problem on the square. On the squar:
well known that Gauss—Lobatto nodes are optimal. A precise convergence analysis is
difficult because of the singular coefficients in the differential operator. But from the eig
value computations in Section 5 it becomes clear that the spectral operator is numeri
elliptic.

4. SINGULAR SOLUTIONS AND AUXILIARY MAPPINGS

The geometric singularity (corner in=0) often gives rise to singular solutions. The
irregularity is due to the fact that the differential equation and the boundary conditi
are not compatible. This usually leads to a singularity in the corner. The accuracy of
spectral method is then degraded and there is no significant advantage over low-order
difference or finite element methods. It is possible, however, to use a priori informa
about the behaviour of the singularity in constructing improved schemes. This has |
accomplished by using

e supplementary singular basis functions,
e conformal maps to smooth the singularity,
e domain decomposition techniques or adaptive refinement.

Here we are concerned with auxiliary mappings to smooth the singularity. This techni
was already investigated by Pathria and Karniadakis [13] for the spectral element mef
For certain simple cases, the problem is transformed to a new coordinate system, v
the solution is analytic, and the exponential convergence is recovered. Even when tl
not possible, the singularity is usually much weaker after mapping, so that other treatn
are more effective in the new coordinate system. Such a singularity occurs if for inste

TABLE 1l
Results for Example (8)

N E2
4 1.89x 1074
8 8.85x 1077
16 1.84x 1071

32 1.78x 1076
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TABLE Il
Results for, = «/2

N ER
4 6.30x 1075
8 2.08x 10°¢
16 4.36x 1078
32 3.81x 10720

=-1;ie,
—Au=1 in le,
u=0 o0nay,.

We evaluatediy inr = % 0 =61/2. The computation was performed fdr=4, 8, 16, 32
and6, =n/2, «, gn. Since the exact solution is not known we compared the values wi
uy for N =36. ERdenotes the error compared to this value. In Tables I, IV, and V w
present the numerical results #yr= /2, r, gn.

Only for 6, =7 do we observe spectral accuracy. In the other two cases there is
exponential convergence, due to the singular behaviour of the solutio; Eaer it is
shown (see [13]) that mapping is recommendeddforl/+/2. Hence fop; = gn auxiliary
mapping leads to improved accuracy. Boe /2 there is no improvement. The mapping
introduces new coordinates

6
p:rl/“, o=— forf,=anr.
o

Hence Qqy, is mapped ont®),,, where the geometric singularity has disappeared. Itis easi
seen [13] that Eq. (3) is equivalent to

pzupp + pU, + Ugp = Olzpza f inQ,. )
Compared to (3) there is only a change in the right-hand side which now leads the sing

behaviour. There is no singularity due to geometry. Typical error estimates kh'#merm
are presented in [13]:

e without mapping,

Jlu—un|| <CN?*¢ C>0;

TABLE IV
Results for@, =

N ER
4 6.05x 10
8 3.13x 10°®
16 1.01x 10°°

32 1.85x 107
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TABLE V
Results for6; = 37

N ER
4 1.87-10°°
8 1.06-10*
16 1.37.10°
32 6.11: 107

e with mapping,

lu—un| <CN*™, C>0

for any € > 0. Hence fora =g it is recommended to use mapping with an error decs

proportional toN 8, instead ofN ~#/® without mapping. Fox = % the mapping technique
leads to somewhat worse results. Without mapping the error decay is proportidirat.to
These theoretical predictions were fully confirmed by the numerical results presented i
Tables VI and VII.

Finally, we consider a nonsmooth example, where the right-hand d&ldiscontinuous.
We consider Egs. (3) and (4) with = /2. The functionf is now defined by

f— -1, x+y<l1,
=1o.

X+y=>1 (10)

Hence,f has a discontinuity along the axes-y = 1. Since now the solution is not smooth,
no high accuracy can be expected. From the numerical results in Table VIIl it can be obse

that a first-order method results. Here no higher accuracy than for finite difference or fi
elements can be achieved.

5. PRECONDITIONING

First, we were interested in the eigenspectrum of the first derivative operators. Fol
standard spectral schemes (see [2]) it is well known that the largest eigenvalues sc:
O(N?). For reasons of symmetry the eigenvalues fx andd,/dy are the same. Ofty,

TABLE VI
6; = =/2 with Mapping

N ER
4 7.54x 107
8 3.67x 10°°
16 2.50x 1078

32 6.36x 1078
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TABLE VII
6, = 3w with Mapping

N ER
4 8.56-10°*
8 6.96. 106
16 1.47.10°°
32 1.75 10712
we obtain
sing
UX = COS@ Ur - r_ u@ )

. cosd
uy = sinfu, + Ug.

On Ty, we have

cosf +tysing
—————————sinfuy,

Uy = Ur —

cosf + t; sing c

Uy = tyu, + 0SHUy.

We fix 6, = 7 /2 and calculate the absolutely maximal eigenvalygsfor N =4, 8, 16, 32.
In Tables IX and X we present the numerical resultspn Ty, for 61 =7/2. OnQy, the
maximal eigenvalues seem to behaved®®), whereas oy, asO(N?).

Further we consider finite difference preconditioning for problems (3) and (5). We f
0, = /2. By numerical tests we found that it is better to work with the equations multiplie
by r2. Another good choice for preconditioning is bilinear finite elements, as propos
by Deville and Mund [6]. We have more experience with finite differencesuldéenote
a one-dimensional function. The finite difference approximations for the first and secc
derivative are given by

w'(8j) = 0.5(—yj_1w(Sj—1) — (¥j — vj—Dw(S)) + yjw(Sj+1)),
w”(8)) = 26 (yj—1w(Sj—1) — (¥j + vj—Dw(S)) + y;w(Sj+1)),

TABLE VI
Results for Example (10)

N ER
4 6.32x 10°°
8 1.81x 103
16 9.56x 107

32 4.04x 1074
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TABLE IX
Amax for 8/0x, 818y on Qg,, 01 = 7/2

N )‘max }»max/N3
4 1.19x 10t 0.19
8 2.01x 10t 0.39
16 3.08x 106 0.75
32 4.84x 10¢ 1.48
where
1
§j= ——,
Sj+1— Sj—1
1 .
yjj=——, j=1...,N-1
Sj+1 = Sj

The finite difference discretization of Eqgs. (3) and (5) can now be derived by tensor p
uct representation. In Tables Xl and Xl we present the absolute value of the mini
and maximal eigenvalués,i, andinax for the spectral operators of Egs. (3) and (5). Th
quantity

A
cond= -~

Amin

yields a reasonable approximation of the condition number.

In Tables Xl and XIV we present the corresponding results for the preconditior
spectral operators. As expected, the condition number is dramatically reduced by prec
tioning. Itis only slightly increasing itN. This is the typical behaviour which was already
observed for the spectral Laplacian on rectangular domains (see [10, 11]).

6. DOMAIN DECOMPOSITION

Here we consider the patching of a rectangle with a triangle. We solve the problem

Au=f inQ, (11)
u=g onaQy, (12)
TABLE X

Amax for 8/0x, 818y onTy,, 01 = 72

N }lmax )"maX/Nz
4 4.00x 1¢° 0.25
8 1.25x 10 0.20

16 4.70x 10 0.18

32 1.83x 1% 0.18
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TABLE XI
Results for the Spectral Operator (3)

N Amin Amax Cond
4 4.49 7.59¢ 10t 1.69x 10t
8 4.26 1.11x 106° 2.59x 107
16 4.16 1.75¢< 10¢ 4.20x 10°
32 412 2,79 107 6.78x 1¢°
TABLE XIlI

Results for the Spectral Operator (5)

N Amin Amax Cond
4 5.10 1.15¢ 17 2.26x 10
8 4.58 1.8% 10° 4.15x 177
16 4.39 3.0% 10¢ 7.00x 1¢°
32 4.29 4,93« 10° 1.15x 10°
TABLE XIII

Results for the Preconditioned Operator (3)

N Amin Amax Cond

4 0.63 1.73 2.75

8 0.62 2.13 3.44

16 0.62 2.30 3.73

32 0.62 2.39 3.87
TABLE XIV

Results for the Preconditioned Operator (5)

N Amin Amax Cond
4 0.99 1.71 1.73
8 0.99 2.12 2.13

16 0.80 241 3.01

32 0.66 2.83 431
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FIG. 5. Shape of2y.

where f andg denote given data and

=Ty, UR, R=(0,1) x (=1,0].

We fix 61 = /3 so that2y, has the shape of a house (see Fig. 5). On the inteffacé0, 1)
we use an interface relaxation procedure as proposed by Funaro, Quarteroni, and Zano
Here a sequence of Dirichlet—Neumann problems isiterated until convergence. Continu
normal derivatives at the interfaces are enforced. The iteration proceeds tiogihtinuity
is achieved to some prescribed tolerance {4 our experiments). The Poisson problen
is solved on each subdomaly) andR. We startwittu§ =u3 = 0 andthenfom=1,2, ...

we iterate as
m
Auy
m
u;
m
up

and

= f |n Tgl,
=g onoTy — T,
=™t (1 -sMuft onT
Aud = f inR,
uy=g ondR—T,
ouy’  auf
—= = —= onT, v outer normal
av av

wheres™ denotes the relaxation parameter which is chosen dynamically in order to acc
ate the convergence. Usually it is the unique real minimizer of the error between succe
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TABLE XV
Results for Example (13)

N It E2, E2,
4 11 5.89x 107! 3.80x 10t
8 18 5.49x 1073 3.59x 1073
16 25 5.37 1078 1.60x 1078
32 36 8.44x 1071 4.95x 10714

iterates and is computed as

R

where(-, -) denotes the discrete? inner product and

gn_ (e =)

=u"—u™?t =12

is the difference between two iterates on the relevant subdomain. This iteration proce
until some prescribed tolerance along the interface (her&1.0n Table XV we present the
numerical results for an example where the exact solution with nonhomogeneous boun

conditions is given by

ulx,y) = sin(3nx + z)s:in((’azry + z), 01 = z. (13)
4 4 3

It denotes the number of interface relaxations which are necessary until convergence.
terwards the discrete? errorsE2;, E2, on the subdomaing, ;3 and R are calculated.
From the numerical results we once more observe exponential convergence of the pat
spectral scheme. Hence, we also found a highly accurate method for domains with
corners. Clearly, these techniques can be generalized to domains with an odd numb
corners.

7. SUMMARY

By using polar coordinates, the triangular elements are mapped on rectangular dom:
where standard spectral collocation schemes are available. Here a Chebychev colloc
method with Gauss—Labatto nodes in the polar coordinates is employed. Both for smc
and singular solutions the expected high spectral accuracy is achieved. The accuracy |
termined only by the smoothness of the solution. More complicated geometries consis
of triangular and rectangular subdomains can be treated efficiently by a domain decon
sition approach and patching technigues. Here a Dirichlet-Neumann relaxation is iter:
until the continuity of the normal derivatives on the interfaces is achieved.
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